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Abstract—A general method of analysis is presented for the solution of the problem of diffusion of a solute in
a finite medium in which a first-order reversible reaction takes place. In this problem, a solute from a well-
stirred solution of finite volume diffuses into a material of finite volume. Inside the material volume, the
diffusing solute is immobilized into a non-diffusing product at a rate proportional to the concentration of the
‘solute free-to-diffuse’. A reversible reaction also takes place. General analytical solutions are presented for
the concentrations of the ‘solute free-to-diffuse’ and the ‘immobilized solute’ in the three-dimensional
material volume as a function of time and space. To illustrate the application, the general solution for the one-
dimensional, time dependent case is used to obtain the solution of a specific diffusion problem inside a slab,
cylinder and sphere.

NOMENCLATURE S(r,1), concentration of solute immobilized in
a, radius of a cylinder or sphere; or half the medium;
thickness of a slab; t, time variable;
A, surface area for material ; T,(x,1), concentration of solute free-to-move
C(r,1), concentration of solute free-to-move in the medium;
in the medium; Ty(x,t), concentration of solute immobilized in
Cos initial concentration of solute in the the medium;
solution; u,(x,1), particular solution of equation (27a);
D, diffusion coefficient in equation (30a); X, general space coordinate;
f1(x), initial concentration of solute free-to- X, one-dimensional space coordinate;
move in the medium; v, volume of the solution;
f2(x), initial concentration of immobilized w(x, t), coefficient in equation (la);
solute in the medium;
Ja(X), Bessel function; Greek letters
k(x), coefficient in equation (1d); oy, 0y, coefficients in equation (1b);
Sa? o ] a, B(x), coefficients in the boundary condition
K;= o coefficient in equation (33b); operator (1b);
22 ¥1(x), ¥,(x), eigenfunctions defined by equations
K, = ’1_, coefficient in equation (33b); (5a) and (5b);
D o(2), concentration of solute in the
Aa L. . solution;
K, = 7 coefficient in equation (33d); do, initial concentration of solute in the
m, exponent which is taken as 4,0 and —4 sglutlon ’
for slab, cylinder and sphere s eigenvalues; .
respectively ; ¥, coefficient in equation (1d);
N, norm'ftlization integral defined by _r , dimensionless space variable;
equation (12b); a
D, the Laplace transform variable; s,m, coefficients in equation (30b):
P(x,1), the source term in equation (1a); Dt
r, the space variable; T= o dimensionless time variable;

Scalar product (f;,f,) of two functions is defined as
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INTRODUCTION

THE PROBLEM of solute diffusion from a well-stirred
limited volume of solution into a material region of
finite volume is of interest in numerous engineering
applications. A limited number of studies available in
the literature on this subject are concerned only with
the analysis of very specific situations [1-3]. Here we
consider a general problem in which a solute from a
finite volume of well-stirred solution diffuses into a
finite material volume. The concentration of the solute
in the solution depends only on time and is determined
by a mass balance at the boundaries of the material
region; that is, the amount of solute leaving the
solution should be equal to that entering the material
region through its boundary surfaces. Then, as the
solute diffuses through the region, a first-order re-
versible reaction takes place. That is, the solute is
immobilized at rate proportional to the concentration
of the ‘solute free-to-diffuse’ to form a non-diffusing
product with a reversible process. Let T,(x, ) be the
concentration to the ‘solute free-to-diffuse’ at the
location x and T,(x, t) be the concentration of the non-
diffusing (i.e. immobilized) solid at the location x in the
material volume V. The mathematical formulation of
this mass diffusion problem is given by

w(x){” 1%, z) T,(x,

‘,+ LT (x,t) = P(x,t),

ot ar
xeV, t>0 (la)
oTax0 _ o, Ty(x, 1) — 0, Ta(x, 1),
ot
xeV, 1>0 (lb)
subject to the boundary conditions
BT, (x,1) = ¢(1), xeS, >0 (l¢)
C—l? +7 L k(x)%ds =0,
xeS, >0 (ld)
and the initial conditions
T (x,0) = f(x), k=12, xeV (le)
$0) = ¢ (1f)
where the operators B and L are defined as
L= -V [kx)V] (1g)
BEa+ﬁ(x)k(x)g% (1h)

d/0n is the normal derivative at the boundary surface
in the outward direction, o is a constant, $(x) and k(x)
are coefficients.

In this mass diffusion problem we are concerned
with the determination of the distribution of con-
centrations of the ‘solute free-to-diffuse’, T(x,t), and
the ‘immobilized component’, T,(x, ), in the material
region V. The solution of this problem is given in the
following section.

ANALYSIS

This problem can be solved by the combined
application of the Laplace transform and the finite
integral transform as now described.

The Laplace transform of the system (1) with respect
to the time variable ¢ yields

pw(x)[f’1 (x,p) + 7‘2(x, P

w(x)[ fi(X)+fo(x)]+ LTy (x.p) = P(x, p),

xel’ {2a)

pTa(x.p) — fo(x) = o, Ty (x,p) = 0. T2(x, p).

xel {2by
BT, (x,p) = $(p), xeS ()
[ [ Kx) ,T;(w)ds].

on
xes (2d)

where p is the Laplace transform variable and the
superscript (") denotes the Laplace transform of the
function with respect to 1.

Equation (2a) is integrated over the region V., the
volume integral involving the L operator is changed to
the surface integral; we find

T (X, = s
( k(x)i”«f;(r»x p) ds=p(1,T, + T,)
Js on

~

RE

P(x,p)dr (3a)

where the scalar product of two functions f,(x) and

f>(x) is defined as

(fi.2) = [ wix)f; (x)fz(x)de. (3b})

Jv
This result is introduced into equation (2d) and the
resulting expression for ¢(p) is substituted into equa-
tion (2¢); we obtain

BT (x,p) + y(1.T, + T5) = g(p) (4a)

where
1 ‘ -
glp) = p{d)o + 9L fi + )+ ' P(x.p)dr]. (4b)
) SV .

Now, the problem is reduced to the solution of
equations (2a) and {Zb) subject to the boundary
condition (4). The problem defined by equation (2a),
(2b) and (4) can be solved by the application of the
finite integral transform technique. The development
of the integral transform pair and the use of this
transform pair for the solution of the problem are
described below.

Development of the integral transform pair

To develop the integral transform pair appropriate
for the solution of the above problem we consider the
following eigenvalue problem
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wPw)[W(x) + ¥,(x)] = Ly, (x), xeV (5a)
125 (x) = 0295(x) — 0191(x), xeV (5b)
By (x) + y(1,¥y +y3) =0, xeS§ (5¢)

where the linear operators L and B are defined by
equations (1g) and (1h) respectively.

We now consider the expansion of the function
TW(x,p), k = 1,2, in terms of the eigenfunctions of the
above eigenvalue problem in the form

k(X,p) = Z ApWii(x), k=12, xeV (6)
where the summation is taken over all discrete eigen-
values. To determine the coefficients A4,(p), the orth-
ogonality condition for these eigenfunctions is needed.
It can be shown that the following relations hold
among the eigenfunctions ¥, = ¥,(4,X), ¥ =
V(4. x) with k =i or j:

V%) o 4(x)
14 on
2yt = | k d
(“l ”J)(lljlulllll) ,L (X) l/[ (x) M *
1 on
V1(X)  Ya(x)
d
T f Y0y va| 7

and

(#iz —ﬂf)(lllzi’ d’zj)
lﬁn(x) l/lZI(x)

i f MOy ) g, (x)

Equation (7) is multiplied by ¢, equation (8) by ¢, and
the results are added

do. (8)

(ﬂ; _'M]) Z a-k(l//ku l/’k])

oY+
b 2
L k(x) o1, (x) ds. (9)
'I’l]( ) T

The functions 4;(x) and ¢, ;(x), obtained from the
boundary condition (5¢), are introduced into the RHS
of equation (9). After some manipulation we find

2

(ﬂiz —llf) Z O'k(lpkbl/’kj)

k=1

=LY+ 2) J Wi gs
=1 . (10)
= +va) fk%ds
s n

Now, the integration of equation (5a) over V gives

0
f (0T ds = ~(Lyirus). )
s n

Introducing this expression on the RHS of equation

(10) and after some manipulation we obtain the
following orthogonality relation

2
@ Y oW ¥ + you (LY + ¥a)

X (L, + ¥z = 0yN, (122)
where §;; is the kroneker delta and
2
Ny=a Z O (Wiis W) + 701 (LY + 93502, (12D)
k=1

This orthogonality relation is now used to de-
termine the coefficients 4,(p) in the expansion (6). That
is, both sides of equation (6) are multiplied by

wx)[ao W (x) + yo (L, + ¥3))]

and the result is added for k = 1 and 2, integrated over
the region V and the orthogonality condition is
utilized ; one immediately obtains the expression for
Afp). When this expression is introduced into the
expansion (6) we obtain

5] 2
Tk(xy p)= Z I—V_ Wk;(x)[ Z ox(Wiir Tk)
i=1 k=1

+y0 (L + ¥2)(L T, + Tz)j' (13a)

For the special case of T,(x, p) = 1/ag, we obtain from
this expansion the following identity

o0

,Zl N l/’Iu(x)(]- '/Ih + d’Zl)

-1

[aak +— y(l o, + 02)} . (13b)

The expansion (13a) can be split up into two parts to
define the desired integral transform pair as

Inversion formula:

= s)

Tinp = T 1-@lo) k=12 (4
Finite integral transform:
Ti(P) =a kél AU Tk)
+yo, (L + ¥2)(L, T + Ty) (15)

where N, is defined by equation (12b).

Method of solution

The above finite integral transform pair is applied to
solve the problem defined by equations (2a) and (2b)
subject to the boundary condition (4) as now
described.

Equations (2a), (2b), (Sa) and (5b) are multlplled by
01 1(x), G W(XW2(X), 0, 1(" p) and Uzw(x)Tz(x p),
respectively, integrated over the region V, the results
are added, the volume integral involving the L oper-
ator is changed into the surface integral and after some
manipulations we obtain
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2

(p+ud) Z o (Wi T

k=

(SR

= Y. o)
k=1

O 14(x)
by
T ‘sk(X) = 67"1(x p) 8
o Xp) o

+ J Vu(x)P(x, pydv . (16a)
v

To evaluate the integrand of the surface integral in this

expression, i, (x) and T,(x, p) are determined from

equations (5c) and (4a) respectively and introduced

into the integrand ; the equation (16a) takes the form

2
(p+ sz) Z (W is Tk)

k=1
2

Z lf[/ku ﬂ)

k=1
o,
=LY+ k(x)&ds
1 s on
Ty ot
gp) =1, T +T,) k(X)Td
s n

+ [ ¥ x)P(x, p)do (16b)

By integrating equations (5a) and (2a) over the region
V and changing the volume integral to the surface
integral we respectively obtain

d
J()l

(oo T,
s on

W

= =1Ly + ) (17a)

p(,LT, + T,)

L
—(Lfi +f2) = (*,P). (17b)
W

These results are introduced into equation (16b), the
definition of the integral transform (15) is utilized and
after some manipulations we obtain

1 ~

Tip) = b T fi+ ot L Yri(x)P(x, p)de

1 1
+o (L + l//zi){(p - P7+II,Z>

x[go+7 (L1 +)] + ;f f’(x,p)dv} (18a)

A0,

where
. 2
Ji=a Z o1 Wiir fi)
k=1

+yo (L, + YL fi +13). (18b)

The integral transform (18a) is substituted into the

inversion formula (14), the identity (13b) s utilized and
the inverse Laplace transform is taken. The solution of
the problem defined by equations (1) becomes

Ti(x,t) = 04 [d’o + Y(Lfy + f2)

+y J f P(x,t’)dvdt']
o JV

Uk
o, + y(l,0, + 0,) —
)

1

x 1 2 . { ‘ A
+ T N s T o)
i Lok=1

i=

—@o0 (L + W3
+°‘01J J Y 1(X)P(x, 1 )er " dUdl/}- (19)
o Jv 3

THE ONE-DIMENSIONAL CASE

For the one-dimensional case the problem given by
equations (1) becomes

0Ty(x,1)  0T,(x,1)
+
W) [ ot Ct
0 OT (x,t
= [ k() (X ’]+ P(x, 1),
in x0<x<x1, t>0 (20a)
0T,(x,t
2% 0) =06, T1(x,t) — 6, T,(x, 1),
ot
in xo<x<xq, t>0 (20b)
the boundary conditions take the form
0T (xo,1
CTitxo ) _ (20¢)
Ox
(Ty(xy.t)
aTy(xq,t) + Bk(xy)——— =) (20d)
d T t
o0 +yk(x1)0—f&r ) =0 (20e)
d ax
and the initial conditions reduce to
T (x,0) = filx),
k=12 in xg<x<x, (20f)
$(0) = Py (20g)

The solution of the problem (20) is obtainable from
the one-dimensional form of the general solution given
by equation (19); we find

Ty(x,0) = {4’0 + ‘/f l w(x)[f1(x) + fo(x')]dx’

X0

e LA A 010,
+7y P(x',t'ydx"dt’y [ ——
Jo ) . Ok

X1 -1
{aoz + Yoy + GZ)J w(x')dx’}
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21 S
+ ) 'ﬁ‘e—“"'l’kl(x){a Y o w(x')
=1 Vi K=1 %o

xlw(x')

X Pg(XVfilx )X — do0y J.

xo
1 X1
x [ ix) + dr(x)]dx + a0y J f ¥1(x)
0 Jxo
x P(x', t)est dx’ dt'}, k=12 (21)
where N, is defined by equation (12b), that is

2
N;=(Z z Ty
k=1

X1
+7v0, [J
X0

The eigenfunctions ,,(x) and the eigenvalues p
needed for the solution (21) are determined as now
described.

Xt

Wl (x)dx

2
w(x)[wu(x)—i-t//u(x)]dx] . (22)

Eigenfunctions and eigenvalues

The eigenvalue problem appropriate for the one-
dimensional problem (20) is taken as the one-
dimensional form of the above general eigenvalue
problem (5). Then, equations (5a) and (5b) respectively
reduce to

[k( )dll/ X x)}

+i2w(x) [ (1 X) + 21, )] = 0,
in xg<x<x (23a)
11, x) = o292 (1, ) — 0191 (1 %)
in xp<x<x; {23b)

and the boundary condition {5¢) is taken as

Pi(p,x) =0
ol o (gt xq) + BR(x Wri(m, x1)

+7 J‘n w)[Y1 (1, %) + Yo, x)Jdx = 0. (23d)

To replace the integral term in equation (23d} by a
derivative, equation (23a) is integrated with respect to
x from x4 to x, and the boundary condition (23c) is
utilized. We obtain

Jxx
xg

Introducing equation (24) into equation {23d), the
boundary condition at x = x, is transformed to

(23c)

w1 (1 x) + ¥a(p, x)]dx

=~ L), 4
u

ary (s, %) + (ﬁ - %)k(xl)l/fi(u,xl) =0. 29

Now, equation {23b) is written as

(26)

el ) = )

This expression is introduced into equation (23a) and
the function /,(4, x) is eliminated. We obtain

[ D | i =0 070

0y
At =21 .
#( +6’2"ﬂ2)

The solution for ¥, (4, x) may be written in the form
YA, x) = (28)

where u, (4, x) is a particular solution of equation (27a)
which satisfies the boundary condition (23c) at x = x,,.

If the solution (28) should satisfy the boundary
condition (25) we obtain the following eigencondition

where

(27b)

Clul()u, x)

auy (4, %) + (ﬁ - %) k(xui(d,x ) =0 (29)

and the eigenvalues y; are the roots of this equation.

Application to specific problems

To illustrate the application of the results of the
foregoing general analysis to the solution of specific
problems in plane, cylindrical and spherical geomet-
rics we consider the following example.

Example. Consider a material region in the form of
an infinite plate of thickness 2a (or a long cylinder ora
sphere of diameter 24a) is immersed into a well-stirred
solution of finite volume, The concentration of the
solute in the solution is always uniform and initially
Cy, and the material volume is initially free from the
solute. For times ¢ > 0, the diffusion of the solute into
the material volume proceeds and a first order re-
versible reaction occurs inside the material volume. As
a result a non-diffusing product is formed (i.e. solute is
immobilized). Because of symmetry, we consider the
material volume occupies the space 0<r<a and the
solution is confined to the space a < r < {a+1). We
wish to determine the concentration of the ‘solute free-
to-diffuse’ and the ‘non-diffusing product’ as a function
of time and position in the material volume. The mass
diffusion problem described here has been solved in
[3] for slab, cylinder and sphere. We now demonstrate
that these solutions are readily obtainable as special
cases from the general results given in this paper.

Solution. Let C(r,t) be the concentration of the
‘solute free-to-diffuse’ within the body and S(r,¢) be
that of the immobilized solute, each being expressed as
amount per unit volume of the body. The mathemati-
cal formulation of this mass diffusion process is given

by
—ngg_ .
aor

aC(r,1) p. L @ (r, as(r,ty
in 0<r<a,

o
t>0 (30a)

o iIm o,
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BD  sc, - nsinn,
m 0<r<a >0 (30b)
where
L for slab
m= 0 for cylinder (30¢)

—4 for sphere

The boundary condition for this problem at r = 0 is
written by the symmetry consideration as

=t at r=0, t>0. (31a)
The boundary condition at r = a is determined by the
fact that the rate at which the solute leaves the solution
of volume ¥ should be equal to that at which the solute
enters the material over the surface A (i.e. for a sphere
A = 4na®). Then we write

yﬁC(r,t) 4 AD oC(r, 1) -
at ar

0

t>0. (31b)

The initial conditions for the solute which is free-to-
move and that immobilized in the material volume are
taken as

Cir,ty=S(r,t) =0 for

Finally, the initial concentration of the solute within
the solution is C,.

In order to bring this problem into a form readily
comparable with the general problem considered
previously, we define the following dimensionless
variables

at r=aq,

t=0, 0<r<a (310

Dt da?
s, T = 5 K5 o,

a D

Eoam
S

o by

na? _Aa

K,= (32}

‘/

Then the mass diffusion problem defined by equations
(30) and (31) take the form

o ffCE0 asv:g_)} - 2o e}

ot ér h 3? ‘ aé
m 0<&<l, >0 (333
)
S 7) = K;C{¢, 1) — K, S(,7),
ot
in 0<é<l, t>0 (33b)
oY _y for >0 (33c)
o0&
oy LT g for 10 (33d)
oz o
Ci&,0) = S(£,0) = 0, in 0<&<1 (33e)

and the concentration of the solute in the solution s
initially C,,.

Clearly, the problem (33) is a special case of the
general problem (20). By the comparison of these two
problems we write

x=¢ 1=1 T,=C T,=8 7

i
wix) = kix}= """ PO 3
=0, vy=1 o, =K, 6:=K, » i3

2 =1, |
filx}y = f0x) = 0. J

The solution of equation (27a) for u(s, x) for this
particular case is

=0 y=Kooody = Co

ufZ, x) = (ASY" I (25h 135

Introducing this solution into equation (29), the
eigencondition for the problem is determined as
. Ko -
Jda) + =5 2d ) ia) =0 (36}

w
Then, the eigenfunctions ¥,{4, x), (k = 1,2), are ob-

tained by introducing the solution (35} into equations
(26) and (28). We find

K‘S . R -
l//k()»,x) == Cl R;"uz (A<} J "m\f.gf‘
th =121 (37
where
L= /(;+ . (37b)
\j \ Kr; - Hi A

and the functions x™J _,(x) and x"J, _(x) for m =
-3,0 and { are listed in Table 1.

Then, for the special case (34) considered above, the
solutions (21) simphify to

Ten (KK

\ K,/ 2(1—m)

NP
(A ) ee
” K, =1/

+ 2 KK, TIK 2 & ]
i=1 F ]
1 1 + yb_-“””w';rf) e 11} 7' + y ’“'""’:"7
(K, —uiyii2 AE2K 8
Table 1. Functions x™J (x) and x"J, (%)
m X (X)) NPT X))
2 72
A /(—)cosx /( .)sin %
VAt VALY
0 Jolxd i)
12\ sin x {72\ sin x — xgos x
1 - 1= /1( e o
2 { N 2
S ox VAR ¥ X

N
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R i)
i)

The concentration distribution for the free solute T
= C and the immobilized solute T, = S is obtainable
from equation (38) by setting k = 1 or 2 for the cases of
slab (m = 1), cylinder (m = 0) and sphere (m = —$). 1t
can readily be shown that the results obtained in the
manner for T, = C by setting k =1, after some
manipulation, are identical to those given by equations
(14-73), (14-80) and (14-84) for slab, cylinder and
sphere in [3].

(k = 1,2). (38)
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UNE SOLUTION GENERALE DE LA DIFFUSION D'UN
SOLUTE AVEC UNE REACTION REVERSIBLE

Résumé—On présente une méthode générale d’analyse pour résoudre le probléme de la diffusion d’un soluté
dans un milieu fini dans lequel se produit une réaction réversible du premier ordre. Dans ce probléme, un
soluté dans une solution parfaitement brassée de volume fini diffuse dans un matériau de volume fini. Dans
ce volume, le soluté est immobilisé dans un produit non diffusant, 2 une vitesse proportionnelle a la
concentration du soluté libre. Une réaction réversible a lieu. Des solutions générales analytiques sont
présentées pour les concentrations du soluté libre a la diffusion et du soluté immobilisé, dans le volume
tridimensionnel, en fonction du temps et de l'espace. Pour illustration, la solution générale du cas
monodimensionnel variable en fonction du temps est utilisé pour obtenir la solution d’un probléme
spécifique de diffusion dans une barre, un cylindre et une sphére.

EINE ALLGEMEINE LOSUNG FUR DIE DIFFUSION EINES GELOSTEN
STOFFES MIT REVERSIBLER REAKTION

Zusammenfassung — Es wird eine aligemeine Untersuchungsmethode fiir das Problem der Diffusion eines
gelosten Stoffes in einem begrenzten Medium vorgelegt, in welchem eine reversible Reaktion erster Ordnung
stattfindet. Bei diesem Problem diffundiert ein gelSster Stoff aus einer homogenen Losung mit endlichem
Volumen in einen Feststoffkorper endlichen Volumens. Innerhalb des Feststoffkorpers wird der
diffundierende geldste Stoff zu einem nicht diffundierenden Produkt umgewandelt und so gebunden, und
zwar mit einer Geschwindigkeit, die der Konzentration des “frei diffundierenden geldsten Stoffes”
proportional ist. Dabei spielt sich eine reversible Reaktion ab. Allgemeine analytische Losungen werden fiir
die Konzentration des “frei diffundierenden geldsten Stoffes” und des “fest gebundenen geldsten Stoffes” in
einem dreidimensionalen FeststoffkGrper als Funktion von Zeit und Ort angegeben. Um die Anwendung
anschaulich zu zeigen, wird die allgemeine Losung fiir den eindimensionalen, zeitabhingigen Fall dazu
benutzt, die Losung fiir ein spezifisches Diffusionsproblem in einer Platte, einem Zylinder und einer Kugel zu
erhalten.

OBIIEE PEMIEHME JJil MPOLECCA JAU®OY3UU PACTBOPEHHOI'O BEILIECTBA
TP OBPATUMOMNM PEAKLIMK

Anxoraums — fIpeaoxeH o6WMA METON aHANMTHYECKOTO peuleHHs 3ajfa4u 0 AMddY3HH PacTBOpEH-
HOTO BCIICCTBA B CPEAC KOHEYHOro 00BeMa NPH HaNMMKMM 0OPATUMOlN DPeakLUM NMEPBOTo MNMOpAJIKA.
PacTBOpeHHOE BEWECTBO M3 XOPOLIO NEPEMENIAHHOTO PACTBOPA KOHEYHOTO 0Gbema mmbdysaupyet
B IPYroii KOHe4Hblii 06beM, BHYTPH koTOporo nuddysus 3amemnsercs NPONIOPUHOHANLHO HAYAILHOM
KOHUEHTpauuH. OJHOBPEMEHHO MPOHCXOMMT obpatumas peakuus. TlpencTapieHbl oBLIME aHANHTH-
YECKHE PELUCHHS [UIS KOHLEHTpAlLHii pacTBOPEHHOIO BELECTBA B TPEXMEPHOM Cityuae Kak (QyHKUH
KOOPAMHAT H BpeMeHH. B kauecTBe mimocTpanui obliee peuleHHe Ans OJHOMEPHOrO HECTaLHOHAP-
HOTO cj1y4as HCMOIb30BaHO [UIA MOJIy4eHHS PELICHMA YacTHOHM 3a1a4yd o IupPy3UH BHYTPH CNLIOLIHOTO
HMAHHAPA U cdephl.



