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Abstract-A general method of analysis is presented for the solution of the problem of diffusion of a solute in 
a finite medium in which a first-order reversible reaction takes place. In this problem, a solute from a well- 
stirred solution of finite volume diffuses into a material of finite volume. Inside the material volume, the 
diffusing solute is immobilized into a non-diffusing product at a rate proportional to the concentration of the 
‘solute free-to-diffuse’. A reversible reaction also takes place. General analytical solutions are presented for 
the concentrations of the ‘solute free-to-diffuse’ and the ‘immobilized solute’ in the three-dimensional 
material volume as a function of time and space. To illustrate the application, the general solution for the one- 
dimensional, time dependent case is used to obtain the solution of a specific diffusion problem inside a slab, 

cylinder and sphere. 
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NOMENCLATURE 

radius of a cylinder or sphere; or half 
thickness of a slab ; 
surface area for material; 
concentration of solute free-to-move 
in the medium ; 
initial concentration of solute in the 
solution ; 
diffusion coefficient in equation (30a); 
initial concentration of solute free-to- 
move in the medium; 
initial concentration of immobilized 
solute in the medium; 
Bessel function ; 
coefficient in equation (Id); 

coefficient in equation (33b); 

coefficient in equation (33b); 

coefficient in equation (33d); 

exponent which is taken as i, 0 and - f 
for slab, cylinder and sphere 
respectively ; 
normalization integral defined by 
equation (12b) ; 
the Laplace transform variable; 
the source term in equation (la); 
the space variable; 
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Greek letters 

al, az, 
4 B(x), 

4(t), 

4 0, 
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Scalar product 

f 

concentration of solute immobilized in 
the medium ; 
time variable ; 
concentration of solute free-to-move 
in the medium; 
concentration of solute immobilized in 
the medium ; 
particular solution of equation (27a); 
general space coordinate ; 
one-dimensional space coordinate; 
volume of the solution; 
coefficient in equation (la); 

coefficients in equation (lb) ; 
coefficients in the boundary condition 
operator (lb) ; 
eigenfunctions defined by equations 
(5a) and (Sb); 
concentration of solute in the 
solution ; 
initial concentration of solute in the 
solution ; 
eigenvalues ; 
coefficient in equation (Id) ; 

dimensionless space variable; 

coefficients in equation (30b); 

dimensionless time variable; 

(fi,fi) of two functions is defined as 

(f&f2 = j w(xlfiWfiW~. 
V 
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INTRODUCTIO\ A4 &I.\ MS 

THE PROHLEM of solute diffusion from a well-stirred 

limited volume of solution into a material region of 
finite volume is of interest in numerous engineering 

applications. A limited number of studies available in 

the literature on this subject are concerned only with 
the analysis of very specific situations [l--3]. Here we 

consider a general problem in which a solute from a 
finite volume of well-stirred solution diffuses into a 

finite material volume. The concentration of the solute 

in the solution depends only on time and is determined 

by a mass balance at the boundaries of the material 
region; that is, the amount of solute leaving the 

solution should be equal to that entering the material 

region through its boundary surfaces. Then, as the 

solute diffuses through the region, a first-order rc- 

versible reaction takes place. That is, the solute is 
immobilized at rate proportional to the concentration 

of the ‘solute free-to-diffuse’ to form a non-diffusing 
product with a reversible process. Let T,(x,t) be the 

concentration to the ‘solute free-to-diffuse‘ at the 

location x and T,(x, f) be the concentration of the non- 
diffusing (i.e. immobilized) solid at the location x in the 
material volume I/. The mathematical formulation of 
this mass diffusion problem is given by 

This problem can be solved by the combined 
application of the Laplace transform and the finite 

integral transform as now described 
The Laplace transform of the system (1) wtth respeLi 

to the time variable t yields 

[‘\L’(X)[T, (x. p) + P,(x, P)] 

I1.(X)[f;(X)+.f2(X)]+ L,f‘,(w.p) = &x,p). 

XF c i’ar 

pTJx,pl~ f;(x) = “Jfl(X.P) - “~j‘Z(X,PJ. 

KE 1’ (2b) 

BP,(x, pi = 6(p), xes’ (ZC) 

where p is the Laplace transform variable and the 

superscript (*) denotes the Laplace transform of the 
function with respect to f. 

Equation (2a) is integrated over the region I’. the 

volume integral involving the L operator is changed to 
the surface integral; we find 

w(x) -~~ 
i 

fST,(X. t) ? 

clt 
+ ‘~$” 

1 
+ LT,(x, f) = P(x, 2). 

XEV, t>O (la) 

aT,(x, t) .___ 
St 

= CT, T,(x, t) - o,TJx, t). 

XEV. I>() (lb) 

subject to the boundary conditions 

BT,(x,t) = 4(t)> XES. t > 0 (lc) 

i 
T-i, (x, PI 

k(x) -- d.\ = ~(1, F, + T2) 
.5 ii/l 

where the .scalur product of two functions .fi(x) and 
,f2(x) is defined as 

(.f;.fd = w(xlfi(xlfi(xW.. (3b) 

This result is introduced into equation (2d) and the 

resulting expression for 4(p) is substituted into equa- 

tion (2~); we obtain 

Wt) __ + ;, 
dt s 5 

k(x) F & = 0, 

XCS, I > 0 (Id) 

and the initial conditions 

TAX> 0) =.6(x)> k= 1,2, x~c (le) 

&O) = $0 (If) 

where the operators B and L are defined as 

L = -V [k(x)V] (Ig) 
* 

B = o! + fi(x)k(x) ;‘,, (Ih) 

a/an is the normal derivative at the boundary surface S 

in the outward direction, c[ is a constant, p(x) and k(x) 

are coefficients. 
In this mass diffusion problem we are concerned 

with the determination of the distribution of con- 
centrations of the ‘solute free-to-diffuse’, T, (x, t), and 
the ‘immobilized component’, T,(x, t), in the material 
region V. The solution of this problem is given in the 
following section. 

XES (Ml 

Hj‘,(x.p) + ;‘(I. T, + i,i = (I(p) (4aj 

where 

(4b) 

Now. the problem is reduced to the solution of 

equations (2a) and (2b) subject to the boundary 
condition (4). The problem defined by equation (2a), 
(2b) and (4) can be solved by the application of the 
finite integral transform technique. The development 
of the integral transform pair and the use of this 
transform pair for the solution of the problem are 
described below. 

Development of‘ the integral trun.sj?orm pail 

To develop the integral transform pair appropriate 
for the solution of the above problem we consider the 
following eigenvalue problem 
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we obtain the (i0) and after some manipulation 
following orthogonality relation 

P2W(X)[$l(X) + ti2c41 = W,(x), 

PV2W = u2ti2(x) - flltil(X)> 

W,(x) + r(L4+1 + $2) = 0, 

XEV (5a) 

XEV (5b) 

XCZS (5c) 

where the linear operators L and I? are defined by 
equations (lg) and (lh) respectively. 

We now consider the expansion of the function 
?,.(x, p), k = 1,2, in terms of the eigenfunctions of the 
above eigenvalue problem in the form 

Fk(x> P) = f 4(P)+AxX 
i=l 

k = 1,2, XEV (6) 

where the summation is taken over all discrete eigen- 
values. To determine the coefficients A,(p), the orth- 
ogonality condition for these eigenfunctions is needed. 
It can be shown that the following relations hold 
among the eigenfunctions tilk = til(L,, x), $x1, = 
11/2(3Lk,x) with k = i or j: 

X (1, J/lj + +2j> = 61jNi (124 

where 6, is the kroneker delta and 

This orthogonality relation is now used to de- 
termine the coefficients A,(p) in the expansion (6). That 
is, both sides of equation (6) are multiplied by 

and the result is added for k = 1 and 2, integrated over 
the region V and the orthogonality condition is 
utilized; one immediately obtains the expression for 
A,(p). When this expression is introduced into the 
expansion (6) we obtain 

Tkk(x$) = i$l ; dJkdx) a i uk($ki? ?k,, 
1 k=l 

+  u2 

s I 

wtx) $litx) dJ2dx) dv f71 

v dJlj(x) ti2jCx) 

For the special case of Tk(x, p) = l/au, we obtain from 
this expansion the following identity 

and 

(P? -Pi)(dJ2i3 +2j) 

= -u1 s I w(x) tildx) ti2iCx) dv, (*I igl &$ki(‘)(‘p+li + +2i) 
” +ljCx) +2jtx) 

= C auk + 3y(19ul + 02) 
02 1 -I. (13b) Equation (7) is multiplied by ul, equation (8) by u2 and 

the results are added 

(p? -d) i uk($ki> $kj) 
k=l 

The expansion (13a) can be split up into two parts to 
define the desired integral transform pair as 

Inversion formula : 
1(1 ,(x) W&4 

II - an 
ds. (9) ‘k(X* P) = i$l k $ki(x)Ti,(p), k = 1,2. (14) 

W,j(x) 
I 

ILljtx) 7 Finite integral transform : 

= u1 s k(x) 
s 

Ti’i(P) = a t uk($ki, fk,, 
The functions $1;(x) and t+Glj(x), obtained from the 
boundary condition (5c), are introduced into the RHS 
of equation (9). After some manipulation we find 

(/$ -pf,?, i uk($ki,dJkj) 

k=l 

k=l 

+ Vl(l,tili + ti2i)t1v fl + T2) (15) 

where Ni is defined by equation (12b). 

Method of solution 
The above finite integral transform pair is applied to 

solve the problem defined by equations (2a) and (2b) 
subject to the boundary condition (4) as now 
described. 

Equations (2a), (2b), (5a) and (5b) are multiplied by 
U,@,,(x), U2w(x)$,i(xX UI~I(X,P) and u~w(x)~~(x,P), 

respectively, integrated over the region V, the results 
are added, the volume integral involving the L oper- 
ator is changed into the surface integral and after some 
manipulations we obtain 

-Y(lTIl/li++2i) s kf!!!!!& 
01 s an 

a 
-Y(l,Ic/lj++Zj) 

s 

k&jds . (lo) 

s an 

Now, the integration of equation (5a) over V gives 

s k(x)zds = -~~(1,1(11+$~). (11) 
S 

Introducing this expression on the RHS of equation 
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a*li(xJ 

+ 01 4x) 
tilitx) an- 

(??1(x,p) 
~l(X,P) ~~ 

an 

T 

+ I, $li(xJP(xvp)d~ ! 

ds 

(164 

To evaluate the integrand of the surface integral in this 
expression, $ri(x) and ?‘r(x, p) are determined from 

equations (SC) and (4a) respectively and introduced 
into the integrand; the equation (16a) takes the form 

-?d1,ili+i2iJ I s k(x)$ds 

g(P)-Y(l, T, + T,) 
s s 

k(x) 2 ds 

+ 
i^ 

i,i(x)&p)du (16b) 
,V 

By integrating equations (5a) and (2a) over the region 

V and changing the volume integral to the surface 
integral we respectively obtain 

I 
k(x)sods = -$(l $ + I/I ) ) 1 2 117a) 

s an 

i 

~i-,(X>P) 
k(x) Pn ~---- ds = p( 1, ?-, + ;r,) 

. s 

--(I& +.f2) - ;>p 
c J 

(17b) 

These results are introduced into equation (16b), the 

definition of the integral transform (15) is utilized and 
after some manipulations we obtain 

fi(p) = ,:,? “r, + ;fill 
r 
v ili(x)P(x,p)dc 

+OAJIi + uJi[; -- ,;-,) 

x[&,+:~(lrf,+.f2)] +i[v&x,p)d,) (18a) 

where 

.X = a i ak(tikiJk) 
k=, 

+ral(l,~li+~2i)(l,fi+f2). (l’b) 

The integral transform (18a) is substituted into the 

inversion formula (14), the identity (13b) is utilized and 
the inverse Laplace transform is taken. The solution of 
the problem defined by equations (1) becomes 

-40”l(1~$Ii + V+2i) 

I 

faa, .c.r v tjIi(x)P(x, t’)eflfr’ dv dt’ (19) 
0 

THE ONE-DIMENSIONAL CASE 

For the one-dimensional case the problem given by 

equations (1) becomes 

I aTl(x, 1) 
w(x) ___ 

+ aT,(x,t) ~ 
at at I 

= g/c(s)-] + P(x,tj, 

in x0 5 x 5 x1, t > 0 (20a) 

aT,(x, t) 
~ = a,T,(x,t) - u,T,(x,tJ, at 

in x0 5 x IS x1, t > 0 (20b) 

the boundary conditions take the form 

dT,(xo,lJ 
--- = 0 

(7.X 
WC) 

aT,(x,, t) + jk(x,) ~~l$“! = 4(t) Pod) 

d&t) - -1 
dt + yk(x,, !?!$‘r! = () We) 

and the initial conditions reduce to 

T&O) =WJ, 

k = 1,2 in x0 2 x I x, (20f) 

6(O) = &. (2Og) 

The solution of the problem (20) is obtainable from 

the one-dimensional form of the general solution given 
by equation (19); we find 

T&t) = $0 + Y 
i s x1 w(x’)[fi(x’) +l;(x’)]dx’ 

X” 
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X [$tdx’) + #2i(x’)]dx’ + au1 1s =’ +l&‘f 

> 

0 x0 

x P(x’, t’)edt’ dx’ dt’ , k = 1,2 (21) 

where Ni is defined by equation (12b), that is 

Ni = c( ~ (Tk 
X1 

w(x)$&(x)dx 
k=l s x0 

[s 

” w(x)[11/1 i(x) + $2dx)]dx 1 
2 

+Wl . (22) 

x0 

The eigenfunctions ok* and the eigenvalues pf 
needed for the solution (21) are determined as now 
described. 

Eigenfunctions and eigenvalues 
The eigenvalue problem appropriate for the one- 

dimensiona problem (20) is taken as the one 
dimensional form of the above general eigenvalue 
problem (5). Then, equations (5a) and (Sb) respectively 
reduce to 

+IU2W(X)E~1(~,X)+4jt*(11,X)l = 0, 

in x0 I x<x, (23a) 

PVz(bX) = atJ/z(/A4 - ~lll/i(P,X) 

in x0 IX< x1 (23b) 

and the boundary condition (5~) is taken as 

@l(PL,Xi) = 0 (23~) 

@i(axi) + Pk(x,)+;(#x,) 

+Y 
f 

X’ w(x)E$r(~, x) f &(p, x)ldx = 0. G234 
x0 

To replace the integral term in equation (23d) by a 
derivative, equation (23a) is integrated with respect to 
x from x0 to xi and the boundary condition (23~) is 
utilized. We obtain 

i 
X1 w~~)[~~(~,~) + Jl&,x)ldx 
x0 

= - $ k(x,)+;(p, x1). (24) 

Introducing equation (24) into equation (23d), the 
boundary condition at x = x1 is transfo~ed to 

@i(~,x,) + B - 5 k(xt)$;(fi,xt) = 0. (25) 
( > 

$&4x) = -$$&*hx). (26) 

This expression is introduced into equation (23a) and 
the function $2(p,x) is eliminated. We obtain 

arty] + ~~w(x)~~(~~,x) = 0 (27a) 

where 

PW 

The solution for Jlt& x) may be written in the form 

$1(&x) = C,ut(Ax) (28) 

where u,(%, x) is a particular solution of equation (27a) 
which satisfies the boundary condition (23~) at x = x0. 

If the solution (28) should satisfy the boundary 
condition (25) we obtain the following eigencondition 

(29) 

and the eigenvalues pi are the roots of this equation. 

Application to spec#ic problems 

To illustrate the application of the results of the 
foregoing general analysis to the solution of specific 
problems in plane, cylindrical and spherical geomet- 
rics we consider the following example. 

Ex~rnp~e. Consider a material region in the form of 
an infinite plate of thickness 2a (or a long cylinder or a 
sphere of diameter 2a) is immersed into a well-stirred 
solution of finite volume. The concentration of the 
solute in the solution is always uniform and initially 
Co, and the material volume is initially free from the 
solute. For times t > 0, the diffusion of the solute into 
the material volume proceeds and a first order re- 
versible reaction occurs inside the material volume. As 
a result a non-diffusing product is formed (i.e. solute is 
immobilized). Because of symmetry, we consider the 
material volume occupies the space 01 rla and the 
solution is confined to the space a I I s (ai-!). We 
wish to determine the concentration of the ‘solute free- 
to-diffuse’ and the ‘non-diffusing product’ as a function 
of time and position in the material volume. The mass 
diffusion problem described here has been solved in 
[3] for slab, cylinder and sphere. We now demonstrate 
that these solutions are readily obtainable as special 
cases from the general results given in this paper. 

Solution. Let C(r,t) be the concentration of the 
‘solute free-to-diffuse’ within the body and g(r,r) be 
that of the immobilized solute, each being expressed as 
amount Per unit volume of the body. The mathemati- 
cal formulation of this mass diffusion process is given 
by 

Now, equation (23b) is written as in 0 S r <a, t > 0 (30a) 
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aqr, t) 
- = 6C(r, t) - +qr, t), 

at 

where 

in 0 I r I a, t > 0 (30b) 

i 

4 for slab 

m= 0 for cylinder (3Oc) 

-f for sphere . 

The boundary condition for this problem at r = 0 is 
written by the symmetry consideration as 

&z(r, t) -__l” = 0 
2r 

at r = 0, t > 0. 131a) 

The boundary condition at r = a is determined by the 
fact that the rate at which the solute leaves the solution 
of volume V should be equal to that at which the solute 
enters the material over the surface A (i.e. for a sphere 
A = 47~1’). Then we write 

r;%t!.t,+,,?%!_O 
at ar - 

at r = a, t > 0. (31b) 

The initial conditjons for the solute which is free-to- 
move and that immobilized in the material volume are 
taken as 

C(r,r) = S(r,t) = 0 for t =O, OS p I u. (31c) 

Finally, the initial concentration of the soIute within 
the solution is Co. 

In order to bring this problem into a form readily 
comparable with the general problem considered 
previously, we define the following dimensionless 
variables 

Then the mass diffusion problem defined by equations 
(30) and (31) take the form 

in 01 C; 11, t > 0 (33a) 

F = K,C(<,?) - K,S(<, PI, 

in 0~ 4 s 1, t >O (33b) 

wzo 
cst ’ 

for z>O (33c) 

for r>O (33d) 

and the concentration of the solute in the solutiL~n 85 
initially C,. 

Clearly, the problem (33) is ;I special cast 11t ~hr 

general problem (20). By the comparison of these: PA<> 
problems we write 

T =I .r 5.. I = 5, T, = c . 2’2 - s, ; 

N’(S) = &,xr z 5’ ‘PJ~ f’LY. I b =- tl. 

Y{> =: 0, k-1 = 1. 01 - K,$. I-:> = k,,. 
i 
> I?4) 

x = 1, 11 = 0. ;’ = K, . @,, =- i ‘(,. : 

f;(x) =f;(x) - 0. i 

The solution of equation (27a) for u(/.,.sJ for this 
particular case is 

u(R, .u) = (ng)“J,(;.: 1. t.;f;r 

Introducing this solution into equation (29). the 
eigencondition for the problem is determined as 

Then, the eigenfunctions Ij/k(i: .Y). (k = 1~ 2). are ob- 
tained by introducing the solution (35) into equations 
(26) and (28). We find 

where 

and the functions I’“.! _ &) and x”‘d I _ ,,,(sj for R : - 
-4, 0 and f are listed in Table 1. 

Then, for the special case (34) considered above, the 
solutions (21) simplify to 

0 Jo(x) J!(X) 
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(k = 1,2). (38) 

The concentration distribution for the free solute T, 
= C and the immobilized solute T, = S is obtainable 
from equation (38) by setting k = 1 or 2 for the cases of 
slab (m = )), cylinder (m = 0) and sphere (m = -)). It 
can readily be shown that the results obtained in the 
manner for T, = C by setting k = 1, after some 

manipulation, are identical to those given by equations 
(14-73), (14-80) and (14-84) for slab, cylinder and 

sphere in [3]. 
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UNE SOLUTION GENERALE DE LA DIFFUSION D’UN 
SOLUTE AVEC UNE REACTION REVERSIBLE 

R&m&On prlsente une m&hode g&n&ale d’analyse pour resoudre le problbme de la diffusion d’un soluti 
dans un milieu fini dans lequel se produit une reaction reversible du premier ordre. Dans ce probltme, un 
solute dans une solution parfaitement brass& de volume fini diffuse dans un materiau de volume fini. Dans 
ce volume, le solute est immobilist dans un produit non diffusant, $ une vitesse proportionnelle g la 
concentration du sol& libre. Une reaction riversible a lieu. Des solutions g&bales analytiques sont 
pr&ent&es pour les concentrations du soluti libre B la diffusion et du sol& immobilisi, dans le volume 
tridimensionnel, en fonction du temps et de l’espace. Pour illustration, la solution g&kale du cas 
monodimensionnel variable en fonction du temps est utilisi pour obtenir la solution d’un probl&me 

spbifique de diffusion dans une barre, un cylindre et une sphere. 

EINE ALLGEMEINE LOSUNG FOR DIE DIFFUSION EINES GELijSTEN 
STOFFES MIT REVERSIBLER REAKTION 

Zusammenfassung - Es wird eine allgemeine Untersuchungsmethode fiir das Problem der Diffusion eines 
gel&ten Stoffes in einem begrenzten Medium vorgelegt, in welchem eine reversible Reaktion erster Ordnung 
stattfindet. Bei diesem Problem diffundiert ein gelijster Staff aus einer homogenen Lijsung mit endlichem 
Volumen in einen FeststofIkGrper endlichen Volumens. Innerhalb des FeststolTkGrpers wird der 
diffundierende gelijste Staff zu einem nicht diffundierenden Produkt umgewandelt und so gebunden, und 
zwar mit einer Geschwindigkeit, die der Konzentration des “frei diffundierenden gel&ten Stoffes” 
proportional ist. Dabei spielt sich eine reversible Reaktion ab. Allgemeine analytische LGsungen werden fiir 
die Konzentration des “frei diffundierenden gel&ten Stoffes” und des “fest gebundenen gel&ten Stoffes” in 
einem dreidimensionalen FeststofiGrper als Funktion von Zeit und Ort angegeben. Urn die Anwendung 
anschaulich zu zeigen, wird die allgemeine L6sung fiir den eindimensionalen, zeitabhgngigen Fall dazu 
benutzt, die Liisung fiir ein spezifisches Diffusionsproblem in einer Platte, einem Zylinder und einer Kugel zu 

erhalten. 

06uEE PELUEHME ,QJIR l-lP04ECCA AMWDYSIIM PACTBOPEHHOrO BEUECTBA 
nPM 06PATMMOfi PEAKUMM 

AHHoTaluln -- npennowteH 06uuiH MeToa aHanHTngecKor0 pcmetiun 3aiIaqH 0 AI+$Y~HN paCTBOpZ!H- 
~oro ae4ecTaa a cpene KoHeqHoro o6aeMa npH Hanngmi 06paTah4oB peaKUm nepaoro nopnnaa. 

PaCTBOpeHHOe BelUeCTBO W3 XOpOlllO nC~MCUIaHHOr0 PaCTBOpa KOHeYHOrO o6beMa AW$+yHAk,p,'eT 

B ApyrOfi KOHe'lHblti O&.CM, BHyTpH KOTOpOrO AH44y3liX 3aMeDJlReTCR npOnOpUHOHaAbH0 HaqanbHOii 

KoHUeHTpaUWi. OAHOBpeMeHHO IIpORCXOAkiT 06paTuMafl peaKUHn. npeACTaBneHb1 o6mwe aHanHTB- 

'IeCKAe pellleHl,fl AJll KOHUeHTpaUliii paCTBOptZHHOr0 BelUeCTBa B TpeXMepHOM Cflyqae KaK +yHKUHfi 

KOOplUiHaT H BpeMeHli. B Ka'IeCTBC KnJUOCTpaUkiH o6mee ~IlleHliC AJIS OAHOMepHOrO HeCTatufOHap- 

HorOcny~axHcn0nb30BaH0m~nony~eHm pemeHsa racTHoti sanaw 0 na44y3m BH~T~H CnnowHoro 

umuHnpa u c@epbl. 


